
Google Network
Filtering Management
Thorsten Dahm
td@google.com

A Few Facts About Google's Edge

Around 6,000 configured public services VIPs
Many of these are shared between multiple services
Each VIP and service has multiple backend systems

Around 100 distinct services ports
We are not just web anymore!

HTTP / HTTPS services run on over 4,600 of those VIPs
Edge cache deployments
Recently, Facebook announced it had over 30,000 servers

This amounts to a rounding error compared to the
infrastructure we are required to protect at Google

Unfortunately, we can't release specific numbers

Network Access Control Needs

Specific Router ACL Needs
Production filtering
Edge cache filtering
Corporate filtering
Internal filtering (labs, contractors, special needs, etc)
Acquisition access filtering
Transit filtering
Individual host and network device filtering

Stateful firewalls are used in many places as well, but are
not always necessary, or cannot meet the throughput
requirements.

Historical ACL Management at Google

Manual maintenance of hundreds of individual filters which
were manually updated as needed

Often required duplication of large blocks of networks to
multiple filters that had varying syntax and formats
Method was prone to human error and typos
Very time consuming to maintain
Extremely difficult to review and audit
Often required maintaining of identical filters for multiple
platforms (Juniper, Cisco, F10, etc.)

Several previous efforts helped simplify the process, but
these projects were disjointed, awkward or too "need" or
platform specific

E Unum Pluribus (Out of one, many)

What was needed was a common language to describe
security policies and a standardized interconnect between
the language and policy rules
The language should define a policy and be clear and easy
to read, but flexible enough to accommodate most common
filtering formats
Policies should be able to share common objects and
definitions (ASNs, hosts, networks, groups of hosts and
networks, services and service groups, etc.)
Automate as much of the process as possible to reduce
potential for human error, speed time to delivery, and
reduce expertise needed to manage changes

Write once, output many

Initial Design Structure

The system was designed in
a modular fashion to allow us
to independently develop and
test the various components
and allow for reuse in later
tools.

Naming library
IP Address library

ipaddr / nacaddr
Policy library
Generator libraries

Juniper
IPTables
Cisco standard
Cisco extended
Cisco named
others

Compiler (aclgen)
Unit Tests

Overview of Libraries

The following slides provide a brief overview of the various
libraries and components used in the ACL generation system.

The system is command line based, but designed such that it
will easily allow overlay of various Web or other GUI interfaces.

Release early, release often

The system we use in-house has several key differences:

perforce integration for revision control and reviews
iptables system with custom deployment and loader
integration with other internal systems and processes
more

Naming Library

Provides an easy way to lookup addresses and services
based on token names
We call them definitions.
We store definitions in a directory containing an arbitrary
number of files.
Files can be used to separate definitions based on roles or
function
Multiple groups can maintain individual .net or .svc files

Network defintions files must end in '.net'
Service definitions files must end in '.svc'

Naming Network Definitions Format

RFC1918 = 10.0.0.0/8 # non-public
 172.16.0.0/12 # non-public
 192.168.0.0/16 # non-public

INTERNAL = RFC1918

LOOPBACK = 127.0.0.1/32 # loopback
 ::1/128 # ipv6 loopback

NYC_OFFICE = 100.1.1.0/24 # new york office
SFO_OFFICE = 100.2.2.0/24 # san francisco office

OFFICES = NYC_OFFICE SFO_OFFICE

Naming Service Definitions Format

BGP = 179/tcp

SSH = 22/tcp

NTP = 123/tcp 123/udp

PORT_RANGE = 8000-8050/tcp

DNS_UDP = 53/udp

DNS_TCP = 53/tcp

DNS = DNS_UDP DNS_TCP

IP Address Library

What it provides:
lightweight, fast IP address manipulation

To define an IP address object:
 import nacaddr
 ip = nacaddr.IP('10.1.1.0/24', 'text comment', 'token name')

The text comment and token name are optional, and provide
extensions to the base IPaddr library that allow us to carry
comments from the naming definitions to the final output.

Next, lets examine the methods available to the 'ip' object.

IP Address Library

ip.version -> numeric value, 4 or 6
ip.text -> value of text comment
ip.token -> value of naming library token
ip.parent_token -> value of naming parent token, if nested
ip.prefixlen -> numeric prefix length of IP object (24)
ip.numhosts -> number of addresses within prefix (256)

ip.ip_ext -> IP address 10.1.1.0
ip.netmask_ext -> netmask of address 255.255.255.0
ip.hostmask_ext -> hostmask of address 0.0.0.255
ip.broadcast_ext -> broadcast address 10.1.1.255
ip.network_ext -> network address 10.1.1.0

* Non _ext methods also exist, that provide integer values.

* Logical changes in this library are pending, stay tuned.

Policy Library

The policy library is intended to read and interpret high-level
network policy definition files
Uses the naming library which converts tokens to networks
and services
Creates an object that is suitable for passing to any of the
output generators
Each policy definition file contains 1 or more filters, each
with 1 or more terms

Header sections - defines the filter attributes
Term sections - defines the rules to be implemented

There is no support for NAT at this time
You can add support and submit patches

Policy Definition Format

header {
 comment:: "edge input filter for example network."
 target:: juniper edge-inbound
 target:: cisco edge-inbound extended
}

term discard-spoofs {
 source-address:: RFC1918
 action:: deny
}

term permit-ipsec-access {
 source-address:: REMOTE_OFFICES
 destination-address:: VPN_HUB
 protocol:: 50
 action:: accept
}

example rendered - pt. 1

$ cat example.acl
remark $Id:$
remark $Date:$
no ip access-list extended edge-inbound
ip access-list extended edge-inbound
remark edge input filter for sample network.

remark discard-spoofs
 deny ip 10.0.0.0 0.255.255.255 any
 deny ip 172.16.0.0 0.15.255.255 any
 deny ip 192.168.0.0 0.0.255.255 any

remark permit-ipsec-access
 permit 50 1.1.1.0 0.0.0.255 host 3.3.3.3
 permit 50 1.1.2.0 0.0.0.255 host 3.3.3.3
 permit 50 2.1.1.0 0.0.0.255 host 3.3.3.3

example rendered - pt. 2

$ cat example.ipt
Speedway Iptables INPUT Policy
edge input filter for sample network.

$Id:$
$Date:$
inet
-N discard-spoofs
-A discard-spoofs -p all -s 10.0.0.0/8 -j DROP
-A discard-spoofs -p all -s 172.16.0.0/12 -j DROP
-A discard-spoofs -p all -s 192.168.0.0/16 -j DROP
-A INPUT -j discard-spoofs
-N permit-ipsec-access
-A permit-ipsec-access -s 1.1.1.0/24 -d 3.3.3.3/32 -j ACCEPT
-A permit-ipsec-access -s 1.1.2.0/24 -d 3.3.3.3/32 -j ACCEPT
-A permit-ipsec-access -s 2.1.1.0/24 -d 3.3.3.3/32 -j ACCEPT
-A INPUT -j permit-ipsec-access

example rendered - pt. 3

firewall {
 family inet {
 replace:
 /*
 ...
 ** edge input filter for sample network.
 */
 filter edge-inbound {
 interface-specific;
 term discard-spoofs {
 from {
 source-address {
 10.0.0.0/8; /* non-public */
 172.16.0.0/12; /* non-public */
 192.168.0.0/16; /* non-public */
 }
 }
 then {
 discard;
 }
 }
 term permit-ipsec-access {
 ...

Generator Libraries

There are current 3 generator libraries, more are desired
Juniper
Cisco
IPTables

Juniper can generate 3 output formats:
IPv4
IPv6
Bridge

Cisco can generate 3 output formats:
extended
standard
object-group (extended with object-groups)

Iptables can generate 2 output formats:
IPv4
IPv6

Cisco Generator

Renders policy objects into Cisco network ACL filters

Defaults to generating "extended" ACL filters

Supports several output formats:
Extended
Standard
Object-Group

Output text begins with "no ip access-list...", then defines
replacement with "ip access-list..."

Provides for easy cut-paste deployment
Each policy term is identified in remark text
Object-Group is essentially what we've done in the framework for
hosts and services

Cisco Generator

Defining Cisco output in the Policy "header" section:

header {
 comment:: "cisco filter header"
 target:: cisco [filter name] {extended|standard|object-group}
}

For standard ACLs, the format is:

header {
 comment:: "cisco filter header"
 target:: cisco [number] standard
}

Juniper Generator

The most fully featured generator, since Google has a long
history as a Juniper partner

Defining Juniper output in the Policy "header" section:
header {
 comment:: "juniper filter header"
 target:: juniper [filter name] {inet|inet6|bridge}
}

Juniper Generator

Supports most "optional" policy definition keywords:
destination-prefix:: currently only supported by the juniper generator
ether-type:: currently on used by juniper generator to specify arp packets
fragment-offset:: currently only used by juniper generator to specify a
fragment offset of a fragmented packet
icmp-type:: [echo-reply|echo-request|port-unreachable]
logging:: specify that this packet should be logged
loss-priority:: juniper only, specify loss priority
packet-length:: juniper only, specify packet length
policer:: juniper only, specify which policer to apply to matching packets
precedence:: juniper only, specify precendence
qos:: apply quality of service classification to matching packets
routing-instance:: juniper only, specify routing instance for matching
packets
source-prefix:: juniper only, specify source-prefix matching
traffic-type:: juniper only, specify traffic-type

 [broadcast|multicast|unknown_unicast]

IPTables Generator

Used within Google as component of a host based security
system
The current output format is not suitable for
'iptables-restore'

This is planned for the open-source version shortly
Until then, each line can be passed to /sbin/iptables
Internally, Google uses its own specialized loader
(speedway)

Supports both IPv4 and IPv6 filter generation
Terms are rendered as jumps in the base filters

Optimization algorithm desirable, especially for large
filters

Permits setting of default policy on filters

IPTables Generator

Defining Iptables output in the Policy "header" section:
header {
 comment:: "iptables filter header"
 target:: iptables [INPUT|OUTPUT|FORWARD] {ACCEPT|DROP}
{inet|inet6}
}

Internally, we generate multiple smaller IPTables filters that
each provide a specific function, then chain them together for
create policies.

For example: we have a base policy that is always applied,
and may include one or more additional 'modules' to enable
functionality such as web-services, mail-services, etc.

Compiler (AclGen)

Located in parent directory: aclgen.py

Arguments:
 -d [definitions]
 -p [policy source file] (mutually exclusive with --poldir)
 -o [output directory]
 --poldir [policy source directory] (mutually exclusive with -p)
 --help -h

The -p option is generates output for a single policy source file

The --poldir option allows you to generate ACLs for an entire
directory of source policies

Assurance / Validation Development

The following slides provide a brief overview of the various
libraries and components used in our ACL assurance and
validation processes.

These tools are essential parts of the ACL process at Google.

We do not want our customers to suffer an outage due to an
error or accident in our ACL management.

* Unfortunately, most of these tools aren't being released at this time. *

Assurance / Validation Development

Once the initial system was built, it allowed us to easily
do things that were previously very difficult or impossible.

Regular reports are now generated advising us of potential
problems or issues.

Other code and projects have also integrated components
of our system into their own code, such as naming library
& definitions.

Assurance / Validation Development

AclCheck library
NacParser libary
AclTrace library

Netflow validation
aka "snackle"

Load balancer validation
aka "crackle"

Policy Reader library
Term Occlusion library
Iptables assurance aka "Pole Position"

AclCheck Library

Having all the various flavors of ACLs in a single policy
format allows us the ability to easily analyze filters
Allow verification of specific packets against a policy to
determine what matches will occur
Pass in policy, src, dst, dport, sport, proto and it returns and
aclcheck object
Methods:

ActionMatch(action) - matched terms for this exact
action
DescribeMatches() - text descriptions of matches
ExactMatches() - excludes 'next' actions
Matches() - list of matched terms

AclCheck is the basis for most of our ACL validation tools
that we describe in the following slides

Netflow Validation (aka Snackle)

We cannot tolerate accidental outages due to ACL errors

"Snackle" compares huge amounts of previous netflow data
against proposed ACL changes
Alerts us whenever a new ACL is built, but before it is
pushed out if a possible conflict is detected
Allows us to detect errors before they might affect our users

accidentally blocking POP3 to gmail servers for example
Obviously, it cannot identify problems that result from "new"
services that did not exist in previous netflow sessions

VIP Validation (aka Crackle)

We cannot tolerate accidental outages due to ACL errors

"Crackle" parses configurations of our public VIPs to
determine what IPs and services should be available
Alerts us whenever a new ACL is built, but before it is
pushed out, if a possible conflict is detected
Allows us to detect errors before they might affect our users

inadvertently blocking POP3 to Gmail servers for
example

Also identifies stale or misconfigured load balancers
This has saved us from inadvertent outages on several
occasions

IPTables Assurance - aka Pole Position

The md5 hash of Google "Speedway" deployments needs
to match the hash of the currently applied policies
All deployment report back to central collector at regular
intervals

install hash, current hash, role, modules, interface stats
Collector performs variety of functions on data

validates reports
stores valid data in database
analyzes data for issues
reports in real-time though Web UI

all hosts
per role reports

Policy Reader library

The policy reader library is a recent addition that allows
other code to easily examine policy source files
The policy library only reads policies for the purpose of
rendering objects for passing to generators
For some tools, we needed to be able to easily examine the
various filters and terms for programatically

where certain tokens are used
where specific options are used
etc.

Policy reader renders simple objects that allow us to do this
Handy for a variety of tools, such as rendering policies in a
Web UI for example

Term Occlusion library

Another library built onto this system examines complex ACLs
to identify when a term will block or overlap subsequent terms

This library helps us to identify common errors such as:
overly broad terms
mismatched QoS accepts (more specific before more
general terms)

Summary - Do Know Evil!

ACLs are highly prone to human error
Manually auditing and reviewing large and complex ACLs is
very difficult and time consuming
Keeping large blocks of networks in sync between large
numbers of ACLs is time consuming and error prone
Automating these tasks reduces manual labor, helps
eliminate typos, and helps identify logical errors

Without this system, we would be overwhelmed today due to
the size, complexity and large number of ACLs in the Google
environment.
We have open sourced much of this code hoping
to help other large and small business.

Core Code Released to the Public

We have open-sourced the software under the Apache2 license

http://code.google.com/p/capirca/

** Detailed help and documentation is available on the wiki **

If you use it and modify it, please contribute your patches back.

The name, "capirca", was intended to be "caprica" from BattleStar Galactica
(the "new world"). One of my colleagues registered the misspelling, then later noticed the
error, but the correct spelling was already taken.
So, for efficiency(?) we have kept the name Capirca.

http://code.google.com/p/capirca/

Questions?
Thorsten Dahm
td@google.com

